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PREFACE

This report constitutes the second of two volumes which summarize
the work accomplished under Contract NAS1-9890. It contains the analysis
of three fluid dynamic problems important in space shuttle design: dome
impact; sloshing in tanks for which the thrust vector is not aligned with
the tank axis; and hydraulicjumps in long, shallow tanks. The first part
of the work, which deals with design, experiment, and analysis of a space
shuttle vehicle model, is summarized in Final Report, Part I "Dynamic
Interaction Between Structure and Liquid Propellants in a Space Shuttle
Vehicle Model. "
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PROPELLANT DYNAMIC PROBLEMS IN
SPACE SHUTTLE VEHICLES

By William J. Astleford, Wen-Hwa Chu,
Franklin T. Dodge

INTRODUCTION

Seventy to eighty percent of the lift-off mass of proposed space shuttle
vehicles consists of cryogenic liquids, and the orbiter vehicle alone will carry
a larger amount of liquid into orbit than has any previous vehicle. The dynamic
loads created by these large masses of liquids and the interaction of the liquid
with the shuttle structure both need to be understood and accounted for in the
design, a task which is greatly complicated by the nonsymmetric configuration
of the shuttle, the requirement of airplane-like maneuverability, the necessity
of performing safe '"aborts'' in the event an emergency arises during flight,
and the stringent requirements imposed on structures and materials by a
planned 100 re-use cycle.

A recent paper* described a number of propellant dynamic problems of
shuttle vehicles for which more knowledge is required. In brief, these problems
were as follows.

Slosh during ascent. --The problems of propellant slosh during thrusting
are: the coupling of slosh to motions of the vehicle, and vice versa, induced by
the nonaxisymmetric (side-by-side) configuration; slosh in nonaxisymmetric
tanks; and sloshing in tanks when the thrust axis is not aligned with the tank axis.

Liquid imotions at separation. --Large transverse impulses can cause
gross liquid motions and large disturbing forces and torques at a particularly
critical time.

Liquid behavior in orbit and during docking. --Low-gravity sloshing in
the orbiter can occur, especially if the payload is a liquid. Docking of an
orbiter containing a large mass of liquid might result in impact loads large
enough to '"de-latch' (i.e., abort the docking).

*Abramson, H. N., Dodge, F. T., and Kana, D. D., "Propellant Dynamic
Problems in Space Shuttle Vehicles, ' Space Transportation System Technology
Symposium, Vol. II - Dynamics and Aeroelasticity, pp. 59-77. NASA TM
X-52876, Vol. Il




Flyback of orbiter or booster. --Any small residual mass of liquid in

the tanks during a normal flyback can cause large disturbances during high
angle-of-attack return or during maneuvering just prior to landing. This is
because in both cases, the effective gravity is directed more or less perpen-
dicularly to the sides of the tanks so that the liquids are contained in what are
now long, shallow tanks. Liquids motions in this "bathtub' mode can be
particularly pronounced.

Aborted flybacks. --If a mission is aborted, it is likely that at least a
brief period of maneuvering, possibly including separation and airplane-like
flying, will be necessary before the propellants can be dumped safely. If the
main engines shut down during an ascent through the atmosphere, the liquids
may impact on the upper bulkheads (dome impact); this can cause large dis-
turbing forces and torques and may even rupture the tanks and cause a fireball.
During separation at non-optimum heights and velocities, the liquid motions
may cause serious control problems, and certainly during the flying phase of
abort the large shifts in liquid c. g. would be difficult to compensate for by the
pilot.

In this report, we will examine in some detail three of the problems
listed above. After an unscheduled shutdown of the main engines during the
atmospheric portion of the ascent, the sudden deceleration causes the pro-
pellants to move gros sly toward the upper bulkheads. This liquid propellant
reversal or dome impact is examined with some approximate analyses in the
next section of the report, for main engine shutdown of various points along
a typical ascent trajectory. Next the sloshing or wave action that occurs
when the lateral acceleration of the vehicle is much greater than the axial
acceleration is investigated; this "bathtub'' mode of liquid response is typical
of high angle-of-attack flybacks, landing, and violent separations during
aborts. Finally, the sloshing of propellants in tanks for which the thrust
vector is not aligned with tank is analyzed. (Unfortunately, the time schedule
of this project did not allow us to carry our investigation beyond the point of
dete rmining natural frequencies. ) '

We have treated each of these three problems as separate and distinct
in this report. Actually, there are situations such as occur in aborted mis sions
in which all three kinds of motion are important; further research is required

to elucidate the way in which one form of response is coupled to the rest.

3%



DOME IMPACT AND RELATED PROBLEMS

Mathematical Development

The condition known as propellant reversal or "dome impact' results
from gross reorientation of liquids in fuel tanks and is characterized by
dynamic interaction forces between the arrested liquid and the tank bulkhead.
‘The motion of the fluid is initiated by the application of transient forces or
accelerations to the vehicle which have a predominant component in the direc-
tion of the tank longitudinal axis. These unbalanced loads may result from
(a) an unprogrammed thrust termination of the boost engines during ascent,
(b) the physical separation of the vehicles during abort and (c) the docking
maneuver between the orbiter and space station.

Rigorous analytical description of the three-dimensional flow field
and pressure distribution during dome impact is a formidable task. Several
simplifying assumptions have been made in an attempt to obtain order of
magnitude estimates of the peak impact force on the dome; these assumptions
will be properly noted during the course of this development.

A nominal ascent trajectory was obtained through the cooperation of
General Dynamics/Convair and used to establish flight conditions. The syn-
thesized vehicle has a gross lift-off weight (GLOW) of 3.5 MLB and a nominal
booster engine cutoff (BECO) weight of 1.28 MLB. The configuration of the
vehicle is a ''parallel stage' booster and orbiter; the booster has straight wings.
The nonlifting trajectory has a qmax = 560 psf at Mach number M = 1. 06,
staging at 212,400 ft and 9, 250 fps, and a maximum axial load factor of 3.V
during the latter portion of boost. Thrust gimbal angle and vehicle angle of
attack were zero for all time--hence, a gravity turn ascent. Table I sum-
marizes system weights (including orbiter), volume and weight of fuel on
board at selected times, the drag-to-weight ratio, dynamic pressure, etc.
Fuel weight-volume calculations were based on the assumption that no
residuals remain in the boost tanks at nominal BECO and that there was one
tank for each propellant constituent. The drag values do not reflect the
decrease in base pressure resulting from engine shutdown.

Broadly, the approach to the dome impact problem is as follows.
Three points were selected for an impact analysis of the booster tanks:
t = 50, 70, and 136 sec into the mission for LH2 impact and t = 50, 70, and
110 sec for LOX impact. These times fall within the extremely critical abort
Mode IB (20 to 140 seconds) as defined by the NASA-SSV predesign study of
Reference 1. The final times differ, as will be discussed later, because the
LOX volume remaining at t = 136 sec was incompatible with the analysis.
This situation will be clarified later. At each of the selected points prior
to assumed thrust termination the trajectory performance parameters
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permitted calculation of the axial and transverse components of the total
load factor vector, T, as well as the quiescent fuel free surface angle which
is taken to be normal to that load factor. Figure 1 presents the coordinate
system and summarizes the definition of load factor and fuel free surface
angle, B. The trajectory which was furnished to us was non-lifting with zero
angle of attack and zero thrust gimbal angle. Consequently, the load factor
is purely axial and the fuel surface angle is idealistically zero.

Thrust termination is assumed to take place instantaneously rather
than following a throttling schedule similar to that encountered during
initiation of nominal staging procedures. Therefore, immediately following
termination, the vehicle encounters a deceleration field of a magnitude
equivalent to the drag-to-weight ratio. Alternately, the liquids react to
an acceleration field of the same magnitude which is assumed to act in a
step function fashion. The drag force is assumed to remain constant during
the brief period of time from thrust termination to dome impact.

With the theoretical fuel free surface angle and acceleration field
defined, tank sizing and liquid equations of motion can now be considered.
The booster LH2 tank was taken to be a hemispherically-capped right circular
cylinder as shown in a general orientation in Figure 2. Consistent with NASA
and other Phase A predesigns;the tank longitudinal axis is parallel to the
booster reference axis, and the tank diameter, di, of 30 ft is representative
of these design layouts. Neglecting ullage volume, i.e. the tank is completely
full at launch, the cylinder length is sized according to Equations (1) and (2)
for a 6:1 oxidizer-to-fuel ratio. The volume of fuel remaining in the LH2
tank at any time, t, is calculated by substituting the appropriate W(t) from
the trajectory for the GLOW in Equation 1. By using Equation (3} the liquid
free surface is located longitudinally relative to the tank fixed x-y axes.
The rationale behind inclusion of non-zero fuel surface angles in the analysis
will be clarified in the next section. Upon thrust termination a particle of
liquid, mj, will be accelerated toward the dome at, conservatively, D/W g's,
where W is the total system weight. Assuming that there is initially no inter-
action between fluid particles or between the fluid and the tank walls, the
motion of the leading edge of fluid relative to tank fixed axes is governed, accord-
ing to Reference 2, by Equations (4), (5), and (6). Straightforward solution
of these equations permits calculation of time of arrival, tg, and velocity
§r(t0) of the first particle of fluid to reach y = L., Equation (7). The liquid is
assumed to traverse the contour of the hemispherical dome in a curved sheet
with an unattenuated velocity, y(ty). The peak impact force was taken to be
the steady state contribution to the one-dimensional momentum theorem, and
the unsteady term, which was neglected, reflected a lower level transient




HATIODNV dOVJAdNs THNA ANV
JOLOVA AVOT TTIDIHHA A0 SNOILINIAHJ-- T Jd40DI4A

0] 2614

M i,

un Ops0d [+ DSOOQ-DUIST-
ueple=¢g- 06 = U¥ t .

>: M

Opuis| +0UISQ- DSOD T -

( PUIM 3ALR[3L ) A

(Isnagi ) L oc‘

SIXY JONFYIIY 101 Im_>

d
At_:._



1#0¢g

b

SNOILVADHE ANV NOILVINDIANOD MNV.L NIDOYTAH INCIT-~ "7 TdNDIAL

e

[N £] (urv ™z |4

gue} p+s>=(Q)A

m Fv" >
(M) 1

.lel _OINVL N:._\& =99

[(gueyip+ >)-21)z | 1O
el
(S) 0=(0)4
(€) wwcuwl+Alml +ucﬂvmutwnwz4?
(1) 7y [(9%%0- 019 ) lm- = NV,
uidep buljnas oneis = y
.x

—~ duerp -

-

Ip SIXV 43

NN

+

_ SEEEANTH

N

YN




force associated with the initial entry of fluid into the dome.* The steady
state force of the fuel on the dome is described by Equation (8). It has been
tacitly assumed that the quiescent mode of slosh does not occur. To fully
apply Equation (8) the "effective nozzle area, ' A(h), must be evaluated. This
area is taken to be the cross-sectional area of the fuel sector at y = L, which
corresponds to the static, transverse settling depth, h, consistent withthe
volume of liquid in the tank at thrust termination. The depth and area in
question are shown schematically in Figure 2. The iterative solution for
A(h) is easily obtained using the tables of areas and heights for sectors and
segments of circles and spheres in Reference 3. Ideally, the line of action
of the calculated force coincides with the tank longitudinal axis. In reality,
however, the reaction force will be inclined at some small angle to this axis
and will be slightly larger than calculated due to neglect of the lateral move-
ment of the fuel center of gravity during modal slosh. These latter effects,
however, should be considered minimal from an order of magnitude viewpoint.

The procedures for evaluating LOX dome impact follow lines of develop-
ment similar to those used for LHZ2 dome impact. The basic difference is the
LOX tank shape and orientation with respect to the vehicle reference axis.

As suggested by two Phase A preliminary design brochures, the LOX tank
configuration on the booster was taken to be a frustum of a right circular

cone, capped at both ends by hemispherical shells without regard for points

of tangency. The LOX tank generally lies forward of the LHZ tank, and, due

to packaging constraints, the tank axis is inclined to the vehicle reference

axis by an angle, ¢, with the smaller hemispherical end pointing generally
forward. Figure 3 illustrates this tank in a general orientation. Frustum
length and cone half angle were calculated using Equations (9), (10), and (11).
After calculating the LOX volume remaining in the tank at time, t, in a manner
analogous to the LH2 volume calculations, the LOX free surface is located
using Equation (12), thus.defining h, Ah and d. From predesign scale drawings
of the ILOX tank the angle, ¢, is expected to be small enough to permit approxi-
mation (12b) to be imposed. The drag-to-weightratiowas thenresolvedinto com-
ponents inthe direction of the slantaxes, Xyand Y, where itwas assumedthatupon
thrust termination, particle m; was acted upon only by the Y; component of
D/W, thus giving rise to Equation 13. The velocity and time of arrival of m,
at Y| = L/cos faredeterminedina manner similar to the corresponding LH2
calculation. Equation (16)describesthe impact force, |F_|. The effective
nozzle area is again taken to be the transverse, settled, fuel cross-sectional
area at the entrance to the smaller dome (at section AZ) subject to the constraint
of remaining LLOX volume on board at thrust termination. The iterative

*After the conclusion of the research reported herein, the NASA technical
monitors brought to our attention some unpublished notes by Larry D. Pinson,
dated November 27, 1963, in which a similar analysis is outlined.
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procedure requires the use of the Equation {17}, forthe
LOX volume in a segment of a cone frustum. A, and A, are the fuel areas

at dl and dz, respectively, while AM is the fuellarea at L./2.

prismoidal formula,

To summarize this section, an approximate method has been developed
to obtain order of magnitude estimates of the maximum dome impact force
of LLOX and LH2 resulting from impromptu termination of thrust on the main
booster engines. The LH2 analysis incorporates the ability to investigate the
sensitivity of impact force to small non-zero free surface angles, which
might arise as a result of a combination ef vehicle lift component, positive
angle of attack and non-zero thrust gimbal angle. The LOX analysis permits
the tank offset angle to be treated as an independent variable for design
purposes. In both cases the impact forces act along the appropriate tank axis.

Liquid Hydrogen Dome Impact During Boost

The development outlined previously was applied to the impact of LLH2
into the forward dome of the booster fuel tank for thrust termination at the
previously indicated times, and the results of the principal calculations have
been summarized in Table II. The t = 70 sec point corresponds to nearly a
dmax condition (within 5 psf) on a nominal outbound trajectory while the
t = 136 sec point occurs at the onset of a boost engine throttle sequence
designed to limit total load factor to 3 g's. It should be noted that even though
the fuel level becomes progressively lower as time from lift-off increases, the
arrival time, t,, at the dome entrance does not increase correspondingly due to
the nature of the drag-to-weight profile. The variation of entrance velocity
follows, qualitatively, from similar lines of reasoning.

The magnitude of the LH2 impact force is shown in Figure 4. As
expected, the most severe impact occurs inthe vicinity ofquax or the drag
pinch point. In general, the variation of calculated impact force with time
follows the same trend as the variation of aerodynamic load factor, D/W.

Also shown in Figure 4 is the sensitivity of the dome impact force at gmax to
non-zero fuel free surface angles. A moderate dependence is indicated~-
approximately 870 lb/degree of surface angle. This sensitivity was calculated
to provide an engineering feel for the manner in which the impact force would
change as a result of the following assumptions and constraints imposed on the
analysis:

(1) The flat, non-rotating earth assumption of Reference 2, which was
used in this analysis to calculate the fuel free surface angle, implies
the omission of acceleration terms from the trajectory differential
equations that result in incremental fuel surface angles of the order
of 1° at qmax and 3° at the onset of the 3g throttle.
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(2) The assumption of a nonlifting, zero angle of attack trajectory,
which resulted in zero fuel surface angles, does not appear to be
totally valid for other shuttle designs incorporating a more con-
ventional aircraft-type booster.

(3) In alllikelihooda thrust termination would actuate the attitude con-
trol system in an attempt to maintain vehicle stability. Control
surface deflections as well as pitching moments from an RCS would
result in non-zero fuel surface angles at the initiation of the slosh
motion.

Some discussion of the impact magnitude is needed in light of the "effective
nozzle areas'' and fuel depths used to calculate the forces. Both the 50 and

70 sec thrust termination times result in static settling depths that exceed the
radius of the tank with only the 3g condition near the end of boost producing a
depth less than 15 ft. Obviously it is impossible, in the strictest sense, for

the LHZ to execute full sheet flow at t = 50 and 70 sec as has been postulated.
Therefore, some reduction in peak impact force might realistically be expected.
If the "effective nozzle area' at q, 55 Were to be reduced by approximately

25 percent (equivalent fuel depth of 15 ft), the impact force would be reduced
only to about 69, 000 1b. Hence, the order of magnitude of the estimates are
quite reasonable. A different perspective can be gained by looking at the induced
tensile stress at the hemisphere--cylinder intersection. The average stress

in the wall is simply the impact force divided by the annular tank area. For

a tank wall thickness of 0.1 in., the resultant stress is 764 psi at Qmpax. <Lhis
stress level is well below the elastic limit of aluminum, and structural damage
seems remote at these levels for the LHZ tank.

Liquid Oxygen Dome Impact During Boost

The counterparts of Table II and Figure 4 are presented in Table II
and Figure 5 for the dome impact of LOX in the booster. In this case the
third analysis point was reduced from t = 136 sec to t = 110 sec because the
former time resulted in an on-board LOX volume at thrust termination that
yielded in a negative oxidizer settling depth measured with respect to the
junction of the cone frustum and forward hemispherical dome. In Figure 5 we
observe that the basic trends are the same for both LOX and LHZ impact
except that the LOX force level is significantly larger. This magnification of
the force is directly attributable to the 17:1 LOX:LHZ mass density ratio and
is inversely related to the ratio of LH2 to LOX effective nozzle areas.

It was pointed out earlier that, due to packaging constraints, several
system designs require a tank offset angle, ¢. In addition, most designs
position this tank well forward of the vehicle center of gravity, and the nose
of the tank is canted downward with respect to the vehicle reference line.
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This situation is desirable from a control system standpoint because the impact
force vector, which is aligned with the tank axis, contains a lateral component,
normal to the vehicle axis, that will produce a stabilizing, nose down pitching
moment upon thrust termination which should assist in overcoming the inherent
instability of the booster during separation.

For a tank with a wall thickness of 0.1 in., the longitudinal stress at
the forward bulkhead juncture is of the order of 7000 psi for a g, thrust
termination and represents approximately 10 percent of the yield strength of
a typical high strength aluminum.

Dome Impact During Abort Separation at q, 5«

We have previously estimated the propellant reversal force resulting
from a thrust termination of the main booster engines ata q .. condition,
and now we will consider the propellant reversal associated with forces on the
booster caused by physical separation of the orbiter and booster at zero angle
of attack. Several types of forces may be involved. The first force encountered
is due to mechanical or propulsive separation of the two vehicles which is
designed to impart a relative acceleration between the orbiter and booster.
As the vehicles separate, their individual shock wave flow fields interact
inducing the second class of loads--large aerodynamic interference loads.
The third class of loads results from impingement of the orbiter main engine
exhaust plume on the aft portion of the booster. Finally, since abort implies
a non-optimum staging point, the booster may be required to generate negative
lift in order to maintain stability and avoid collision with the orbiter.

In general, the above loads are heavily dependent on vehicle configuration
and flight regime. In the absence of firm estimates for their individual contri-
butions to the separation dynamics, we may consider their aggregate effect in
a parametric fashion. To this end, during separation the booster is assumed
to be acted upon by the basic zero-lift drag force at q, ., plus a resultant
separation force, R acting at an angle, §, to the booster reference line as
illustrated in Figure 6. R includes the contribution of the separation forces
over and above the basic drag at zero lift. The orientation of the force vector,
R, is based on the experimental results of Reference 4. Separation at Mach
3.0 and booster angles of attack less than 8° induced a negative normal force
coefficient and a positive axial force coefficient on the booster, thus producing
a resultant force coefficient in the direction of R. We assumed that this
behavior can be extrapolated to transonic speeds with the general orientation
remaining unaltered. Dome impact of propellants in the orbiter stage should be
minimal considering that the tanks are full at this time; therefore, the effect
of separation forces on the orbiter will not be considered.
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Wind tunnel abort separation studies presented at the recent Symposium
on Space Transportation Systems (ref. 5) were directed at vehicle separation
at free stream Mach numbers in excess of 3.0. However, there appears to
be negligible experimental abort data available when q .. occurs transon-
icallyas it does for the ascent trajectory under consideration. However, test
data for the damping-in-pitch derivative of a single blunted cone-cylinder-flare
body indicates a highly unstable transonic behavior should be anticipated

(ref. 6).

Propellant motions initiated by thrust termination will probably not
have time to subside before being acted upon by the various components of R.
This situation implies that the initial conditions on fluid motion postulated
previously are not valid. However, for the lack of quantitative information
regarding the fluid motion and orientation at separation with which to form new
initial conditions, we assume that the preseparation disturbances have dimin-
ished to the point where a quiescent surface exists. The separation causes
acceleration of the propellants toward their respective domes with a magnitude:

—

D N WR cos § g , L2
w Booster Booster

y(-) = { - -
% ;Rcosb gcos(6~-¢), LOX

Booster WBoos‘cer

The term containing the separation forces is considered an independent variable.

The drag-to-weight ratio in the previous equations represents a condition where
the vehicle base is partially filled with exhaust plume gases. Accordingly,

when the thrust is terminated base drag increases; to account for this situation

the LOX dome impact force was also calculated for an increase of 20% in D/W.

A 20% decrease in D/W was also considered in an attempt to simulate a booster
configuration with a different drag profile.

In Figures 7 and 8 the impact force per unit "effective nozzle area'
is presented as a function of the axial component of the resultant separation
force, R, upto 6 g's. The impact force is represented in this manner because
of the inadequacy of applying the previous nozzle areas due to the unknown
orientation of the propellants during separation. As can be seen the steady
state impact force is heavily dependent on the separation induced axial ''g"
level regardless of the assumption on nozzle area and is relatively insensitive
to variations in booster zero-lift drag. The addition of a lg increment in
axial separation force results approximately in a trebling of the impact force
over the pure thrust termination case, which corresponds to R = 0. Hence,
from the standpoint of structural damage to the tank and controllability due to
movement of fuel center of gravity and fuel angular momentum, the impact
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FIGURE 7. --LOX DOME IMPACT FORCE PER UNIT "NOZZLE
AREA' FOR ABORT SEPARATION AT q, .5
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forces during separation at a transonic gya« @re more severe than at any
other point on the outbound trajectory.

Docking Dome Impact

The turning vane analysis used for the previous cases Wwas adopted to
investigate the dome impact resulting from fuel movements during docking of
the orbiter and space station. Experience gained from the first stage boost
studies suggests that the principal loads are associated with movements of
LOX. Therefore, it was assumed that the forces which would significantly
affect the ACS (attitude control system) result from dome impact of an assumed
1% LOX reserve in the main orbiter boost tanks which is carried to TPI. It was
further assumed that the LOX/LH2 remaining after OMS (orbital maneuver
system) burn would result in minimal fuel induced loads on docking.

The LOX tank configuration was taken to be a hemispherically capped
cylinder whose longitudinalaxis is collinear with the vehicle reference and
docking axes, i.e., no misalignment. The tank diameter, which was assumed
to be 20 ft, agrees quite closely with the Phase A designs and is only slightly
larger than the NASA DC-3 predesign. Sizing of tank length is determined by
the boost LOX requirements which will be considered subsequently.

In a low gravity environment the fuel free surface assumes a minimum
potential energy configuration. For the case under consideration this surface
is hemispherical, being concave toward the empty portion of the tank. As such
it was felt that the modal form of slosh during docking was more probabilistic
than the quiescent mode.

The docking maneuver itself was considered to take place under coasting
or non-thrusting conditions with a closure rate, Av., ranging from 1 to 3 fps.
A momentum balance for an inelastic docking is approximately

t2
M@ve) = mgldve) + [ Fat
t

where M and m; are the orbiter total mass and fuel mass, respectively. The
left side of the above equation represents the orbiter momentum with respect

to the space station, and the integral signifies the impulse resulting from initial
contact between the two structures. The momentum of the fuel is manifested

in the dome impact force. Regardless of the amount of fuel in a tank a particle
on the free surface will not reach the turning vane with a velocity greater than
the closure velocity, Av,. This situation is particularly true if surface tension
and viscous forces are considered.
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LOX tank sizing was accomplished as follows. A nominal General
Dynamics orbiter requires 510, 400 1b of LOX/LHZ to boost the second stage
from separation to insertion in a 51 X 100 n.m. orbit. Assuming a 6:1
oxidizer-to-fuel ratio and a 1% reserve, second stage boost requires 441, 000
1b of boost LLOX and occupies 5, 900 £t3 of tank volume. Proceeding as though
the LOX completely fills the tank (neglect volume required for application of
ullage pressure), the cylindrical section was calculated to be 5.45 ft long.

The 1% baseline reserve volume of 59 £t3 has a settling depth, h, of
1.4 ft and an "effective nozzle area' of 9.75 ft2. The force equation was applied
to this configuration, as well as to a £10% variation of residual LOX about the
baseline, and the results are shown in Figure 9.

While a 3 ft/sec closure rate probably represents an extreme closure
rate, it is apparent that the impact forces sustained by the dome are not extra-
ordinarily large. The docking simulation tests conducted in Reference 7
utilized a 1 ft/sec closure rate. For closure rates of less than 2 ft/sec, forces
are relatively insensitive to variations of residual LOX volume. It is doubtful
that these force levels will have structural damage implications; however, they
should be of value in assessing control system requirements.
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FIGURE 9. --SENSITIVITY OF LOX DOME IMPACT FORCES DURING
DOCKING TO LOX FUEL RESERVES IN ORBITER BOOST TANK
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LIQUID OSCILLATIONS IN LONG, SHALLOW TANKS

Introduction

During a normal orbiter or booster flyback trajectory, there are times
when the angle-of-attack and load factors are such that the "effective'' gravity,
geff> is nearly perpendicular to the propellant tank walls. For example, this
situation occurs in the General Dynamics/Convair booster reentry during the
period from about 40 seconds after staging to about 100 seconds after staging;
and, of course, during the landing, gravity is always oriented nearly perpen-
dicular to the tank walls. If any residual propellant remains in the tank during
these times, as is likely because of incomplete venting (this is certain to occur
during an abort before staging), the propellant is contained in tanks that are
now long and shallow; this is shown schematically in Figure 10.
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FIGURE 10. --RESIDUAL PROPELLANT LOCATION
DURING HIGH ANGLE-OF-ATTACK FLYBACK
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When the length of the tank is large with respect to the depth of the
liquid, two kinds of liquid free-surface oscillations can occur {ref. 1, 2}. If
the tank oscillation frequency is not too close to the ''slosh' frequency (or if
the disturbance is not periodic), standing waves will appear on the surface.
This response can be analyzed by linearized theories, and a mathematically
equivalent mechanical model can be used to predict the forces and moments
exerted on the tank by the liquid. However, if the oscillation frequency is
near the resonant frequency, standing waves will not be formed but instead
a large amplitude traveling wave or hydraulic jump occurs.

Figure 11 shows a typical tank geometry. If, say, the percentage
volume of residual propellant remaining in the tank after venting during the
flyback is Vp» then the liquid depth h (Figure 11) is approximately

2/3

h® 1.7Ro[ VRE (1 +§i°)] (1)

where it has been assumed that (h/RO)2 << 1.

In order to analyze the sloshing, we can replace the actual tank by an
equivalent rectangular tank with length B:

B = L + 2N2hR, (2)

and width W:

W = 2d2hR, (3)

The equivalent flat-bottom liquid depth hg is
ho = m REVRE (L + § Ro)/BW (4)

(For a tank with Ry = 10 ft, L = 20 ft, and VRE = 0,01 = 1%, these relations
work out to be h=1.1ft, B=20+9.4=29.4ft, W =9.4 ft, and hg = 0. 38 ft.)
Linearized Slosh Response

For the equivalent tank with small amounts of fluid, the fundamental
slosh frequency is:
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wy = mlhogett/ B2)

1/2
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(5)

since in the more general formula (ref. 3) the factor tanh (vhy/B) = whg/B.

The sloshing torques can be computed most easily by using the equiva-

lent mechanical model shown in Figure 12,

to

my = —S—Z(pWBhO) % 0.81 pWBhg

™

The slosh mass, my, is equal

(6)

and is located at a depth below the free surface of dj = -hg, that is, at the

tank bottom.

The rigid mass, My, is about equal to pWBhg - m

= 0.19 pWBh,

and is located at a height above the free surface equal to do = 0. 5ho(m1/mo)

- 0.5hg = 1.83hg.

For small liquid depths, the total moment of inertia of

the liquid about its center-of-mass (c.m.) is equal to the 'frozen' moment of

B2>

In order to calculate the disturbing moment caused by the tank oscilla-
tions, we will let the tank motion be given by a pitching rotation about the c. m.

inertia; that is:

Io + mo(dg + 0.5ho)2 + m (0. 5ho)2 = pWBh, (—1—12— 2 +

and a translation of the c.m.

1

16

(7)

(The moment about any point can be calculated

in terms of these two motions.) The total moment about the ¢.m., for an
undamped pitching oscillation of fomel®t is

]

B
hO

2
> + wl [
d!

2
h
> + 0.2.5'rr2<

o

Bw

)

1

2

1

+11'2<

&)

Ry h

“

JIG)

—g

(8)

where Mg = pWBBgeﬁﬁcm/IZ is the static moment corresponding to a static

tilt of the tank equal to the pitching amplitude 8

cm

A similar equation can be

written for the moment caused by the translation excitation, but Equation (8)is
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sufficient to show the difference between the sloshing form of response and the
traveling wave form. {The reason why M-—=0.985Mg instead of M —=Mg as
wé—=0 is that only the fundamental slosh mass is included in the model, and
higher order modes are neglected. )

A plot of M/Mg wversus (@/wl)2 is shown in Figure 13, for the parti-
ular tank geometry discussed previously (i.e., ho/B = 0.38/29.4 = 0.013);
the curve is almost independent of hg/B so long as ho/B << 1. Right around
resonance, Equation 8 is not valid, since, as we discussed previously, the
traveling wave form of response predominates in this region. If the linear
sloshing assumption was valid, the moment amplitude at resonance would
depend on the viscous or baffle damping. (In other words, for an ideal fluid
with no viscosity, the moment amplitude would be infinite.) Typical values
of this "magnification' factor at resonance are about 10 to 15 in other forms
of sloshing.

Hydraulic Jump Response

In order to determine the actual magnitude of the liquid response near
resonance, we will use the theory developed by Verhagen and Van Wijngaarden
(ref. 2) for the fluid oscillations in long, shallow tanks. This '"shallow water"
theory, which is based on the ideal flow equations (no viscosity) but which does
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not assume potential flow, takes into account nonlinear, large amplitude motions.

It predicts that a hydraulic jump occurs when the tank oscillations are near
resonance, analogously to the shock wave that develcops in a closed column of
gas when the gas is oscillated at a resonant frequency.

The hydraulic jump travels at the shallow-water wave velocity
co = Nhpgeff, so the resonant frequency in the nonlinear approximation is still
w) = 'lT(hogeff/Bz)l 2. The amplitude of the resonant wave is not infinitely
large, even for a zero-viscosity liquid, because there is energy dissipation at

the wave front. Figure 14 shows a half-cycle of the motion.

Verhagen and Van Wijngaarden show that the hydraulic jump height is

2
N = i_ / % Bhofem = 1.04 / Bhobem (9)

for a pitching oscillation of the tank at the natural frequency. The same sort
of jump occurs for a translation excitation.

The resonant moment exerted on the tank by the liquid is:
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FIGURE 13. --MOMENT RESPONSE OF LINEAR SIL.OSH MODEL
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For non-resonant excitation frequencies, the magnitude of the moment is
related to the resonant moment by

Bw - wy)”
0] = [ty - | J1 - Bzl o

The phase angle between the moment and the oscillation for the general case is
given by

172 5

1 | Blw - wy) _ Blw - w;)
¢:Eﬂ+2arcs1n————-—— - arc sin
24geffbem | 96getffcm - 3Blw - w

)2
(12)

1

As can be seen, the phase angle varies nonlinearly with both the excitation
frequency and amplitude. More importantly, the relation between the dynamic
moment and the static moment is now a function of the pitching amplitude, 6.,
and as §cm—>0 the ratio M/Mg~—=> o (although, of course, both M-—=0 and
Mg=—=0 as Bom—=0).

A plot of the resonant moment response, Equation (10), is shown in
Figure 15 for several values of hy/B. The line labeled A = h, corresponds to
the conditions for which hy/B and 6.m are such that the hydraulic jump height
equals the equivalent liquid depth; this places an upper limit on fcmy beyond
which the theory is no longer valid. (The dashed line labeled 1/2B68¢m = ho
corresponds to the condition for which the static deflection of the liquid inter-
sects the tank bottom.)

In order to appreciate the magnitudes of Mg and M, let us consider the
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situation discussed previously: Ry =10 ft, L = 20 ft, and V = 1%. The volume

of residual propellant is 105 cu ft, which corresponds to about 7900 1b of LOX
or 465 1b of LHp. The dimensions of the equivalent rectangular tank are

B =29.4 ft and W = 9.4 ft, and the equivalent liquid depth is hgy = 0.38 ft, so
ho/B = 0.013. If gegr = Ngy, where g = 32.2 ft/secz, then the static moments
work out to be

X 10°

<

1.5N8 ft-1b for LOX

ClITi

<
1

8.8NOopy X 10% ft-1b for LH2
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For 8.y = 0.2°, th = 10 Mg according to Equation 10% or Figure 15, so
that the dynamic moment for this pitching amplitude is

52, 500N ft-1b for LOX

M

11

10 Mg

3700 N ft-1b for LH2

1

M

10 Mg

Thus, the moment is very large when the liquid oscillates in a long, shallow
tank, even if the tank contains only a small mass of liquid. Another way to
see this is to realize that for f.myy = 0.2°, the apparent shift in the cm of the
liquid at resonance is 6.65 ft, according to the theory, and 0. 665 ft for static
conditions.

Conclusions

It seems that dangerously large moments and shifts in the cm can occur
whenever the vehicle is flying at a high angle-of-attack or during landing, even
with small amounts of residual liquids. This is true even if it is not likely that
the liquid will be excited into a resonant condition, simply because the dynamic
forces created by a moving liquid amplify the already large static moment large
for a long, shallow tank.
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*In all the equations, 6 _ must be expressed in radians, not degrees.
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SLOSHING OF AN ARBITRARY TWO-DIMENSIONAL
TANK WITH FLAT MEAN FREE SURFACE

Introduction

During usual vertical rocket launching and acceleration in space, the
gravity coincides with an axis of symmetry of the tank. The prediction of
sloshing frequencies and a simplified mechanical model for such cases at
arbitrary Bond number has been achieved in References 1, 2, and 3. However,
for launching missiles and in particular for returning shuttle planes, effective
gravity is not necessarily parallel to the axis of symmetry, if it exists. It is
one of the objectives of the present project to give some estimate of the natural
frequencies for fuel tanks at general orientation with respect to the direction of
effective gravity g , presently for high-g only.

For an "accurate' prediction of the slosh frequencies, a three-
dimensional analysis appears necessary. However, Budiansky's results
(ref. 4) indicate that the natural frequencies for sloshing in a two-dimensional
circle (''circular canal') are close to those of a sphere, of which the cross
section in the meridian plane is a circle (Figure 16). This suggests that a good
estimation of the effect of orientation on natural frequencies of sloshing may be
obtained by a two-dimensional approximation to a three-dimensional tank.
However, due to time limitations and present objectives, an ad hoc computer
program is devised to yield desired results, with properly selected input data
points specifying the tank shape and free surface. Some results are presented
after description of the program.

Mathematical Problem

For a two-dimensional tank, a set of rectangular coordinates may be
used (Figure 17) with the origin at selected points on the free surface for
convenience of specifying the shape of the contour and the direction of the normal,
if needed.

The flow is assumed to be incompressible and irrotational. There exists
a velocity potential ¢ satisfying

Vi¢=0 (13)

subject to the boundary condition that

94 _ 0 on W (wall) (14)
on
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FIGURE 16. --FREQUENCIES FOR CIRCULAR CANAL (SOLID)
AND SPHERICAL TANK (DASHED) (REF. 4)
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%Q -Ap =0 on F (free surface) (15)
n
where
2
AN=92 (16)
g

n is outer normal.

The tank wall can be quite arbitrary; however, for simplicity of a
"flexible' computer program, it will be assumed to be smooth and convex,
which is the case in many applications. In some cases, with two sharp corners
and even concave bottoms, the program to be presented may also be applicable
if the length of the sides and that of the free surface and bottom are not too far
different, respectively, and enough boundary points can be taken.

Method of Solution

Numerical methods are considered due to their flexibility in application.
In particular, for a general domain, it is convenient to use for the Laplace
equation, either the Winslow method (refs. 1, 6) or the ""machine transforma-
tion' (refs. 7, 8). The program to be presented is based on the machine
transformation with modification of the computer program given in Reference 8.
An inverse influence coefficient matrix is generated in the present program.
Using this matrix, the natural frequencies are obtained through an eigenvalue
subroutine. The orientation effect on the lowest frequency is sought.

Influence Coefficient Method

For programming convenience, the vertical axis y is taken to be normal
to the flat free surface at high-g. The shape of the two-dimensional tank is
taken to be that inthe plane of symmetry or some ''approximate average location.'

An attempt was made to modify the axisymmetric branch of the computer
program of Reference 5, which employs ''direct" influence coefficient calcula-
tions; i.e., the relaxation procedure was used to calculate the effect on the
velocity potential on the free surface (¢p) due to a unit disturbance of the normal
velocity (qu/an)F at a node. However, ¢F = 0 at the origin in non-axisymmetric
flow {m = 0} but not in axisymmetric or two-dimensional flow. Consequently,
in the present case, the direct influence coefficient method reduces to a
Neumann problem in which the velocity potential is only defined within an
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arbitrary constant and the equation matrix is singular. Thus, the relaxation
method diverged even with constraint (say the average of ¢ over all nodes is

¢ = 0) adjusted at the end of every iteration. However, under-relaxation of the
constraint at the right lower corner leads to converged direct influence coeffi-
cients, but not to the correct result for a two-dimensional rectangular tank.
The difficulty lies in the fact that the constraint on ¢ may vary for each column
of influence coefficient matrix and, further, it may differ for the same column
for a different mode (eigenvector).

An inverse influence coefficient method was conceived; i.e., relaxation
procedure was used to calculate the effect on (04/9n)_ due to a unit disturbance
of the potential ¢_, (which is proportional to a small oscillatory pressure). For
some unknown reason, the modified low-g program failed to yield useful
results. At first, it was thought that the method failed since not all influence
coefficient solutions satisfy the boundary condition at the wall; further thought,
however, led to the conclusion this is just another way of inverting a matrix
using a much smaller storage location. It may also be comparable or cheaper
in machine time-cost, if the ratio of surface points to volume points is less
than some yet undetermined number. Since the corner flux in the Winslow
method (ref. 6) may be either due to a wall motion or the free-surface motion,
or both, Winslow's method is less certain than the ""machine transformation'
program employing well-known finite-difference rules. Hence, the latter was
modified. It yielded good results for the test case of a rectangle of depth-
width ratio, 2 (TableIV). There is a small first eigenvalue less than 10-3 or
much smaller, depending on the relaxation factor or the convergence criterion.
It corresponds to a rigid body mode (M = 0) and therefore can be ignored.

TABLE IV. FREQUENCY PARAMETER

Case/Mode No. 1 2 3
11 X 6 mesh 2.881 4.752 5.621
21 X 11 mesh 3.049 5.676 7.728
Exact 3.1416 6.2832 9. 4248

Relaxation Procedure

The direct and reverse S.O.R. (successive over-relaxation) procedure
in Reference 8 was used. However, in generating the inverse influence coeffi-
cients an optimum value of w_; the over-relaxation factor, appears to exist but
reduces to the neighborhood of unity when the angle of tilt is increased.




Furthermore, larger values of wg may lead to rapid divergence; hence, for
simplicity, wR = 1 is suggested for practical use and converges much faster
than Winslow's optimization formula which is strictly valid for block tria-
diagonal matrices with corresponding block relaxation procedures. However,
a '"trial-and-error' procedure to seek and use the optimum value may be
incorporated in a refined program.

Example

An example of a cylindrical shell with two hemi-ellipsoidal bulkheads
was considered. *

Values of the first natural frequency parameter for a ''half-full’ and a
"bottom-full' tank at several values of angle of tilt, §, are shown in Figure 18.
The values relative to zero tilt are shown in Figure 19.

It is noted that variation in the third significant figure of the location of
the free-surface point in some cases indicated a change of natural frequency in
the fourth significant figure, while 10% error at a point near the corner can
cause as much as about 30% error. Since the process of determining surface
boundary points has not been computerized, it is subject to human error.
Further, the mesh is relatively coarse; thus, some irregular points may still
exist. For instance, the relative first natural frequency parameter for the
half-full case at 40° tilt may be a little too high. Improvements, if needed,
can be made in principle.

As an appropriate comparison of a circular cylindrical tank (ref. 9)7
of large depth [ N (6 = 30°)/Ny(8 = 0°)] = 0.674, while that of the half-full two-
dimensional ellipsoidal bottom tank is 0.699; thus, the latter appears to yield
a good estimate.

Conclusions

An ad hoc computer program has been successfully completed for the
calculation of the sloshing frequencies of a general, two-dimensional tank to
show the effect of tilting on the first sloshing mode of a two-dimensional tank
as an approximation to a tilted three-dimensional tank with a flat mean free
surface. More calculations within £90° tilt and comparison with experiments
are needed to show the general usefulness of this or an improved program.

*This was suggested by Drs. F. T. Dodge and D. D. Kana.
TThis paper was published after completion of the present work and is called
to the writer's attention by Dr. F. T. Dodge.
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FIGURE 18. --VARIATION OF FIRST NATURAL FREQUENCY
PARAMETER WITH ANGLE OF TWIST
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FIGURE 19. --VARIATION OF RELATIVE FREQUENCY
PARAMETER WITH ANGLE OF TILT
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The effect on other modes in a three-dimensional tank, say, transverse

to the tilted plane, requires a three-dimensional program which can probably
be achieved by the method of machine transformation. A practical matrix
inversion may become preferable to the inverse influence coefficient method.
It is expected that an order of magnitude larger machine time is required for
good accuracy.
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APPENDIX

A Computer Program for Sloshing in a General,
Two-~Dimensional Tank

By W. H. Chu

Introduction

This is an ad hoc program to obtain the natural frequencies and mode
shapes of a general, two-dimensional tank. A description of the basic principle
has been given in the text. Since a simple parallelogram is used in the trans-
formed plane, it is best suited for, but not strictly limited to, a smooth
convex tank., A modified transformed domain may be required in some cases.

Input SLOSHZ2D

1st card - (12A6) 72 columns of alphanumeric identification

2nd card - (415, 6E10.0) M, N, ITA, IRS, WA, WB, EPS, RLGTH, THETAD

M = number of points along each side
N = number of points along top or bottom
ITA = maximum number of iterations
IRS = restart number
WA = relaxation factor for linear approximations (mesh)
WB = initial relaxation factor for nonlinear solution (mesh
and coefficients)
EPS = convergence factor for mesh
RLGTH = reference length (normalizing factor)
THETAD = counterclockwise tilt of flat free surface in degrees
1st set of cards - (8E10.0) X(1,J), Y(1,J)J =1,..., N
Coordinates for top boundary
2nd set of cards - (8£10.0) X(I,N), YA, N)I =2, , M-1
Coordinates for right boundary
3rd set of cards - {(8E10,0) X(M, J), Y(M,J})J =1,..., N
Coordinates for bottom boundary
4th set of cards - (8E10.0) X({I, 1), Y{I, 1}I=2,..., M-1

Coordinates for left boundary




5th set of cards - (8£10.0) A, B, C,D,E,F (single card}*
Coefficients of general elliptic equation

6th set of cards - (8E10.0) ALPHA (I1,J)I =1, 3;J =1, 4 {4 cards)
Three coefficients for boundary equation for each of four sides
(J =1, 2, 3, 4 are the top, right, bottom and left boundary in
the transformed plane); all ALPHA (I,J) = 0 calculates coefficients
(switch = 0).

Directional Cosines

Directional cosine® of the outer normal, a1 and a2 (I =1, 2) with
respect to x and y axis in the physical plane - - - program can be modified
to calculate the average directional cosine of outer normal at each node by
assuming each segment in the physical plane to be a straight line. At present,
the program requires replacement of ALPHA (1,J), ALPHA (2,J) in the branch
switch = 0 by appropriate analytic expressions through the use of subroutine
ALFA see the tests if (Switch N.E. 0.) GO TO .... Only for quadrilateral
contours one may use the input ALPHA (I,J), I =1, 2 and ignore the replace-
ment, while ALPHA (3,J) is always zero in the present problem. At corners
in the transformed plane, directional cosines of both sides are needed. Other-
wise, read all ALPHA (I,J)=0, 1=1,2,3, J=1,2,3,4 to use the branch
switch = 0.

Output SLOSH2D
Most of the outputs are self-explanatory. The main outputs are the
initial approximation to locations of the nodes in the physical plane, the final
nonlinear approximation to these nodes, the influence coefficientst, and the
eigenvalues, (w%a/g, n=0,1,2,...). (a=RLGTH) and eigenvectors.
Other Remarks
See text.
Listing

See following pages.

*For liquid sloshing A=C =1, B=D=E =F = 0.
+ ALPHA (1,7), I =1, 2.
TIts convergence or divergence indices are printed every 10 iterations.
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94
10

20
30
95

96

3003

200

93

PROGRAM BLOSH2D(INPUT,OUTRUT, TAPE7,TAPE6, TAPE6O=INPUT)

DIMENSION X(40.,24):Y(40,24),1TITLE(L2)

DIMENSION C(40:24,8),PHI(40,24),ALPHA(3,4):,ALF4(40:4)
DIMENSION PS1(40.,24),FBARP(40+24),GBARP(40,24)

DIMENSION €V(24),F(24,24),EVAL(26,26) EVEC(24,24),EVI(i,1)
DIMENSION BIGVAL(24),NVAL(24)

COMMON AE+RE+CE,DE+EE.SINT,COST HO X, Y

KUNs=é

LUNe7

IF GENERATES INFLUENCE COEFF, IC,NE,0 +1F NOT ICe0

Ig INV.INF COEFF, ,VNs(F)PHI,I1C=ed OR ICikLT.0

[Cs=1

NDIM=24

RHD=0,08

BETAC=0,8

WOF|D1

FORMAT (1246)

READ 94,ITITLE

IF(EOF£0)20,30

8TOP

READ 95,MyN,1TA,IR8, WA, WB/EPS)RLGTH, THETAD

FORMAT (4]5,5E10.0)

PRINT 96+ ITITLE:M,N,ITA WA, WBIEPS, IRS

FORMAT (26H1iTRIANGULAR MESH GENERATOR/:1X:12A6/,
1176 LOGICAL MESH 1S +1%:3H X »15/,320 MAXIMUM NUMBER OF ITERATIONS
2 18,15/,404 RELAXATION FOR LINEAR APPROXIMATION 1S ,F7.3/,
353 INITIAL RELAXATION FACTOR FOR NONLINEAR SOLUTION 1S ,F7,3/,
428H EPSILON FOR CONVERGENCE IS ,E10.3/+19H RESTART 1S NUMBER 15/)
NMisN=1

MMisM=]

IF (IRS E@, Q) GO TO 3D03

GO TO (3001,1064,3006),IRS

CONTINUE

READ 200.,(x(Lo)aY(LsJ)aJd=1,sN)

READ 200, (X(Y N),Y(])N),152,MM1)

READ 200, (X{Me)aYIMaJ) 2l N)

READ 200, (X(1,1)e¥CTs1)2182,MML)

FORMAT (BEs0.,0)

DO 93 JalN

X(Lad)eX(1,J)/RLETH

Y(Li,J)8Y({1,J)/RLGTH

X(MsJ)eX(M, JY/RLETH

Y(M,J)BY(M,JI/RLGTH

PO 92 l=2,MM1

XCLoN)YEX(T,NI/ZRLGTH

YCTaNYBY (T NY/RLGTH

XCIo1)BX(], 1) /RLGTH

Y(1.14)8Y(],1)/RLGTH

INTERPOLATE FROM BOUNDARIES TO GET FIRST GUESS

DO 100 J=2.,NML
DO 100 1=2,MM1
X(loJdoexll,delleX(l=l e
Y(l JdeY (] Jel)laY(]l=dl,J)=
CONTINUE
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GO TO 3gnz
c RESTART 1
3001 READ (LUNY ((X(TaJdeY(ToJdelzdsMypdug N)
WRITECKUNY ((XCTaJdia¥(TsJ)eled Misdadl N}
3002 CONTINUE
YTEMP2((Y(1,1)dey{Msl))/Mine2
XTEMP2( (X (4, N)=X(141))/N)sea2
DO 97 Je2,NMY
DO 97 ls2,MM1
C(lsJa1)2YTEMP
C(1,4s2)20,0
CCl e 3)SXTEMP
97 CONTINUE
IDIRE=]
CevnaaTIMING INFQ
CalLL SECOND(TIM)
PRINT 3000,TIM
5000 FORMAT(o0OTIME &,g16.7/)
DO 103 MOS8T=1,1ITA
SX=0,0
K1T=MQST
SY=030
SRX=0,0
8RY=0,0
IDIRE=IBIR
DO 102 K=2,MML
DO 102 (=2,NM4
IFCIDIRY 1001,1002.1002
1001 (1sMMi=K+2
JENMi=L+2
GO TO 41003
1002 13K
Jal
1003 CONTINUE
XTEMP=(X(lelsJol )X (I4d ol )X (] Jo )+ X (a1 ) #X(Imd, )X 1410 d)
1 3/6.0
YTEMP=(Y (Il Jmi )4 Y (141, U+l ) e Y (1o Joad+Y (1 o+ +Y(I=1,J2¢Y (1410 )
1 1/6.0
RX&8(X(],J)=XTEMP)sWA
RY=(Y(1,J)=YTEMP)uWA
X(1oddex({1,J)=RX
Y(l,J)av(]l,J)=RY
SXeSXHX( ] J)und
SYsSY+Y(],J)ve2
SRX=SRX4RXpe2
SRY=8SRY+RY#«a2
102 CONTINUE
IF (MOSTw=20#(MOST/£20)) 1022,1021,1022
1021 WRITE (KUNY (XY )oY (Ll ddalsl s M)odulyN)
REWIND KUN
IRE=Y
{FEMOsY LEn, 20) PRINT 440.1R8
410 FORMAT(21HOYOU MAY USE RESTART ;141
1022 CONTINUE
SRA=EQRT(ERX/8X)
SRY=8QRT(8RY/SY)
IF (8RX ,LE. EPS ,AND. SRY .LE. EPS) 105,103
103 CONTINUE




PRINT 201,8RX,SRY
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201 FORMAT(S1H1PROCESS DID NOT CONVERGE FOR INITIAL APPROXKMATION/c

104
202

110H EPSeX 1S ,E15,7,126 EPS=Y 18 ,E15,7//,4iH ¥ AND Y VALUES ARE
2 PRINTED BELOW BY ROWS/)

DO 104 18i,M

PRINT 202+(X(1sJVsY(1oJ)sd=i,N)

PORMAT (8E15.7)

WRITE (KUN) ((X(1,d)oY(Laddola1sM)yJmleN)

REWIND KUN

IRS=1

PRINT 410,!RS
gTOP

105 PRINT 203.,KIT
203 FORMAT (5BH1PRQCESS CONVERGED FOR INITIAL APPROXIMATION ON ITERAT!

10N »18/,334 X AND Y ARE PRINTED BELOW BY ROW/)

CavnnaTIMING INFO

c

CALL SECOND(TIM)

PRINT 5000,7IM

DO 106 1Bi.M

PRINT 202:(XC12J) Y{1od)od2daN)

106 CONTINUE

WRITE (KUNY (X1 ) YCD,od)134 M) )2l oN)
1 2 CICTadsK)p 1, M), UL, ,N)KEL,3)
REWIND KUN

{R8=2

PRINT 44i0.1RS8
GO TO 1pe?2
RESTART 2 »
1061 READ (LUNY ((X(I,J)aY(1ad)alel, M)adsioN)
1 o 0C(ClT e K)ol , M)udsl,N) I KEL,3)
WRITE(KUNY ((XCI )T )izl MY datl N)
i l(((C(I:J;K):I’lpM)adﬁlnN)gKgiQE)
1062 CONTINUE
WX=WH
WYzWB

IDIRE=1

ConseaTIMING INFO

CALL SECOND(TIM)
PRINT 5000, TIM
DO 135 MOST=1,1TA

IDIR==]DIR

KIT=MOST

§RX=0,0

8RY=0,0

§X=0.,0

svy=0,0

DO 110 1=2,MMYL

DO 110 Js2.NMY
DXDXE((X(IolsJod) e, 00X (Tt d)eX(]oJed N)al(X(1rd=1)+2,06X(]%1,4d)

1 *X(I+1;d+i)))/6s9

BYOXs( (Y (Il Joea)#2,08Y (1=, J)eY (] oJold )Y (1 et )42, 08y (l1,J)

1 Y (1+1,J+1)3)/76.0

GAMMA=DXDXes2+DYDX 22

DXDY2((X{Teled )22, 08X oJ+L)eX{1elsJul))=(X(1=1,J=1)+2,04X(],d=1)
1 +X(141,J2))1/6:0

DYDY ( (¥ (lmd, )42, 0eY ([, Je1)eY(Ial,Jeld)=(Y(I=1,U=1)+2,08Y(1,d=1)
1 ¥ (1+1,J)30/6,0

ALPHA=DXDYae2+DYDY##2




110

1011

1042
1013

111

120
3004

3005
126
127

BETA=DXDY&DXDX*DYDX4DYDY
CPisALPHA=BETA

CR2sRETA

CRI=GAMMA=RETA
CPLsBETACHCPL+(1,0=BETAC)=C(]:ds 1)
CP2=BETAC#CPa+(1,0=BETAC)aC(1,Js2)
CP3=BETACHCPI*(1,0=BETAC)aC({sde3)
Qﬁild:iéﬁgpi

ClliJ,2)8CP2

C{lods3)BCP3

CONTINUE

DO 120 Ks2,MM}

DO 120 L=2,NMY

IFCIDIRY 1014.1042.1012

[sMMieKe2

JENMi=l»2

60 TO ipy3

=K

Jsb

CONTINUE

CieC(lede )

C2=C(1rJs2)

C3=C{1: 213

c4=C1

C85aC2

C6sC3

SUMCEC14C2sC3+C4+CH+C6

IF (ABS(SUMC) = 1.0E=410) 120,120,111
XTEMP2(C1eX(1=1,J)+C2aX(1ml,Jol)wl3axX (], Jel)+CAuX([+1s))
1 +05eX(1+1,J+L)+C6eX(],Je1))/SUMC
YTEMP=(g1eyY(l=1,J)%C2aY(1nl,Jrl) Gy (], J=l)+Clay (41, )
1 +CBeY(1+1l,Jel)eCoeY( ], Jel))/SUMC
RX=(X(],J)eXTEMP)aWX
RY=(Y(1,J)eYTEMP)aWY
X(1aJdd)EX(],J)=RX

Y(led)EY(],J)=RY

SRX=ERX+RXu#2

SRY=8RY+RYau2

SXESX+X( 1) J)wel

SY=SY+Y(1,J)#e2

CONTINUE

IF (MOST~20+(MOST/20)) 3005,3004,3008

WRITE CKUNY (OXCT,)aY(T,d) 154, M) dataN)
1 0CCCUTadaKY s Tat, M) sdrd, N) KEL,3)

REWIND KUN

1R =2

IF(MOST (EQ, 20) PRINT 410,IRS

CONTINUE o

IF (KIT=1) 126126127

SPRX#SRYX

SPRY=SRY

EPSCX35QRT (SRX/SX)

EPSCY=SQRT(SRY/SY)

IF (EPSgX (LE. EPS .AND. EPSCY .LE, EPS) GO TO 140
ETAX=2SQRT (ERX/SPRX)

ETAY=SQART(SRY/SPRY)
ELXS(WXHETAX=1,0)/(WXeSQART(ETAX))
ELYS(WY+ETAY=1,0)/(WY«SQRT(ETAY))
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IF (ABS(ELX)=1,0) 129,129,128 51
128 WAX=WY
GO TO 130
129 WAX=2,0/(1,0+8QRT(1L,0=ELXre2))=WO
130 IF (ABS(BLY)=1.0) 132,132,143
131 WAYswy
GO TO 433
132 WAY=2,0/7(1,0«88RT(1,0~ELYe42))=W0
133 WX=RHO#WAX&(1,0«RHO)oWX
WYSRHO®BWAY&(] ,0=RHO) WY
SPRX3S5RY
SPRY=SRY
135 CONTINUE
PRINT 204,KIT,ERSEX,EPSCY
204 FORMAT (43HINQONLINEAR SOLUTION DID NOT CONVERGE AFTER ,!5,11iW ITER
1ATIONS/, 10K EPRS=X 18 ,E153,7,12H EPS=Y 1S ,E15,7/,34H X AND Y ARE
2 PRINTED BELOW BY ROWS/)
DO 136 1=3i,M
PRINT 202, ¢(X(1eJ), Y(1:0J) o2l ,N)
136 CONTINUE
WRITE (KUNY ((XC1,J)oYCLoJd)o1s8 ,M)edad s N)
1 20 0ClTadsK)p Il M) ol ,N),KSL,3)
IR8=2 i
PRINT 440,1RS
STOP
140 PRINT 208.K1T
205 FORMAT (42HINONLINEAR SQLUTION CONVERGED ON ITERATION: 15/
134H X AND Y ARE PRINTED BELOW BY ROWS/)
CoovaaTIMING INFO
CALL SEGCOND(TIM)
PRINT 5000,TIM
DO 141 1=1,M
PRINT 202, (X(1ed? Y1) pdd, N
141 CONTINWE
WRITE (KUNY ((XC(TI,d)aYClaJddalB2loM)odrdaN)
1 2 0ClT oK) a1 M)l , N)sK21,3)
IR8=3
PRINT 440,1RS
6O TO 3007
" RESTART % ;
3006 READ (LUNY ((XCIoJdoY(TaddalalsM)pdsiN)
1 (el sk ledl M)y Bl ,NY K21, 3)
WRITECKUNY ((XCTsJdeY(ToJdeledi,M)odad N
1 0T oK 121, M) L, N)  KS1,3)
3007 CONTINUE
READ 200,CaPA,CAPB,CAPCCAPD,CAPE, CARF
PRINT 14160
SWITCH=20,0
DO 500 Jsl,.4
READ 200 (ALPHACT J),181,3)
PRINT 1100, (ALPHA(L.J) 181, 3)
SWITCHESW I TCHSABS(ALPHACL  JY 1+ABS(ALPHA(Z,,J))+ABSIALPHA(S J))
500 CONTINUE
P183,14159265
EPBs1,.0E=S
RHO=0,028
THETAsTHETAD®PI/180.
%?2@1.3




52

Hse 08

HOsHO/RLGETH

hed 2,42

he b /R GTH

Beh/SQRT(2.0)

A2shea?

B2sBea?

SINTeSIN(THETA)
CO8STeCOS(THETA)
AE=CO0STne2/a2+B6]NTee2/B2
BE=COSTeSINTR(2,0/B2«2,0/7A2)
CE=SINT#62/42«C08Teu2/B2
DE=2,04H0%BINT/B2
EE=2,0%HD*C08T/B2

CaurasaTIMING INFO

505

CALL SECOND(TIM)

PRINT 5000,TIM

DO 505 Isl.,M

DO 505 Jsi,N

FBARR(],J)e0,0

CONTINUE

INTERIOR POINTS

DO B1p l=2,MMY

DO 510 J=2,NM4
XXIs((X(1=1,J)%2,00X(],J+i )X (¢4 sJed))a(X([=lrJml)e2,0eX(],J=])
i X(1+1,4)))/8,0

YXIEC(Y(Tme, ) w2, 00Y (] ) Jel )oY (o, Jel ) )oY =1 Jml )20 00y (], Jmd)
1 +Y(1+dl,J)))/6,0
XETAS((X(1=1,J21042, DX (1wl o JdeX{]odald)={X(1rdr1)#2,08X(]1,)

1 #X(1%4,J%1)))/6,0
YETARC(Y(lod,J=i)e2:00Y (el d)oY (] oJbd) )oY (T J=1)42,08Y(]%1,4)
1 #Y(1ed,J%1)))/6.,0

X2X1aX (] ol )2, QaX (], J)eX(]syml)
Y2X1aY( 1 Jal)=2,0aY(] )Y (] d=1)
XXIETAEC(XQIEIoJ)*X(an*1>*X(ltd=15+X(1*10J>)”(X(I‘iad¢1)

i wX(Jed el )e2,0aX(]sJd)))e,B
YXYETAE((YSL!i!J)*Y(Itd*i)*Y(l!J!i)*Y(!*19J)?”(Y(l”10451)

i *Y(1*1!J+1)*200“Y(10J)))“|5
X2ETAzX(l=dl,J)=2, 08X {1 J)eX (%1, J)
Y2ETAsY(I=d,J)=2,00Y (] JinY(%1,J)

CJXX]eYETA=XETARYX]

XIXsYETA/CU

X1y=s=XETA/CJ

ETAXz=YXI/CJ

ETAYEXXI/CU

CUXIsYETAXRR I *XX16YXIETA=YXTaXXIETARXETARY2X]
CJETAsYETAsXXETAXX]oY2ETAnYX ] e X2ETA=XETAsYXIETA

XIXXe (X1 XeY X IETAETAXeYZ2ETA) /C)=YEFAe (XIXSCJIXI+ETAXCCJETA) /CJo22
XIXYE(XIYSYXIETA®ETAYSYZ2ETA) /CJaYETAo (X]IYoCQUXI*ETAYSCJETA /Cyun2
ETAXXe= (X IXoY2X [ ETAXeYX{ETA)/CUeYXIa(XIXBCUXI+ETAXSCJETAY/C an?
ETAXYso(XIYoY2XI+ETAY2YXIETA)/CJeY o (X YRCIXI+ETAYRCJETA)/C o282
ABARsCAPAGYIHouZ2+CAPRBa)[YaX I eCAPCaxYaa? ‘

BRAR=22,aCARPARY IXSETANSCARPBs (X YRETAXSETAYSX X)) +2, 6CAPCeX I Y4ETAY
CBARECARPARETAX* 824 CAPBSETAXCETAYSCAPCHETAYR 82
DB&REQQP&*XEXX*C&PQQXIXY%@APC%X;XX*C&Pﬁ#Xix*CA?EﬂXIY
FBARCAPAVETAXXSCAPBOETAXY=CARPCEETAXN+CAPD#ETAXSCAPERETAY
FRARsCAPF

Clisdel)=,5¢BBAR+CBAR+DBAR/G,+EBAR/S,




810

525

830

535

240

(1sJ:2)8e ,54BBAR-DBAR/G ,+EBAR/G,
{1:,J,3)2ABAR+,54BBAR-DBAR/3,-EBAR/G,
(1sJ,4)2,B4BBARKCBAR-DBAR/G, =EBAR/S,
{1ss)B)2e BuBBARSUBAR/S, ~EBAR/G,
{1rJi6)8ABARS , 5*BBAR+DBAR/ 3, +EBAR/G,
(

CONTINUE

RIGHT BOUNDARY

NELY

DO 530 1=2,MML

XX13,8a (3, aX(]oJ)md, X (], J=1)X{]s=2))
YX12 58 (3 Yl s J)md, Y (], Jdol)*Y(],=2))
XETAS Sa(X{lelsJ)aX(]*1:J))
YETA=,Sa(Y(]edoJieY(1#l,J))
CUsXX]oYETA=XETA®YX]

IF(SWITCH.NE, D) GQ TO B2%

CALL ALFA(Y,J,2,BT.ALPHA)

CONTINUE
ALF1e2(ALPHA(1,2)eYETA-ALPHA(2,2)8XETA)/CJ
ALF2e(=aALPHA(L12)eYXI#ALPHA(2,2)6XX])/CJ
ALF3sALPHA(3,2)

ALF4(1.2)20,0

ClliJod)as BepALF2

C(1.,4,2)80.,0

Ctl:Ji3)=2,0ALF4

CllsJa4)s,B2ALF2

C{lsdeB¥=0,0

C(1:4J,6)=20,0

Cllade7)a= BuALF1 ,
Cl1,J,B8)31,58ALF14ALF3

CONTINUE

LOWER BOUNDARY

=M

DO 540 J=2,NM}

XX13 858 (X (] Jed)oX(]ad=l))

YX1=,88(Y (), Jedlley([sdel)) L
XETAs= ,Be(3, 8 (], =4, 8X(]=1,J0¢X(]=2,J))
YETAs=.88(3,ev( ], )=d . 8Y(I=1sJ)e¥([=22:J))
CJeXX]eYETA=XETARYX]

XFCSWITCHIMEOQ) GO TO 838

CALL ALFACT,Js3,BTALPHA)

CONTINUE

ALF1s(ALPHA(L, 3)eYETA-ALPHA(2,3)eXETA)/CJ
ALF2s(=aALPHA(L3)oYXI+ALPHA(Z2,3)eXX))/CJ
ALF3=zALPHA(3,3)

ALF4(J,3)80.0

Clisdidle=2,0hlF2

C(i1.J.,23=20,0

Cll.Je3)a,BualF1

Cll,J.4%80,0

c(IiJéﬁ)gQgD

Cl{lsJ.B)e=,B0ilF1

C{lsJs7 )2, 80ALF2

CllsJsBieey BoALF2%ALF3

CONTINUE

LEFT BOUNDARY

J2i

53




545

550

580

590

i
i

1

DO 580 1=2,MM1

AXTae, B8 (3, X (], Jied,oX(1,Jvida)(],Je2))
YXf=2w Bal{3 oY (1, J)=d,8Y (], J+ilaY({],J%2))
XETAe Sel{X{]=lsdieX{1+i,J))

YETA2  BalYlledlJdeY(1+1:4))
CJeXX]eYETA=XETARYX]

IF(SWITEH::NE,0) GO TO 545

CALL ALFA(I,J:4,BToALPHA)

CONTINUE
ALFie(ALPHA(L 4 )eYETA=ALPHA(2:4)eXETAY/CJ
ALF28(=ALPHA(L 14)aYX]+ALPHA(2,4)aXX])/CY
ALF3=ALPHA(Z, 4)

ALF4(1,4)30,0

Cll,Jol)== 5eALF2

C(i1,4,2)80.0

C(!vdos)ﬂﬂ.g

Cll,Jed)= BupLF2

C(1,J.8%)=0.,0

Ctlidib)8=2,8ALFY

Cl1+J27)2,80ALF1

C(lsiJsBre=y Bupl Fi+ALF3

CONTINUE

LOWER RIGHT CORNER

XX12 54 (3aX{MiN)Iad, e X(MyN=1)EX(M)N=2))
YX1e,B8(B3,8Y(MiN)wd,8Y(M,N=1)+Y(M,N=2))
XETAz=,B58(3, 8X{MN)od,eX(M=1,N)X(M~2,N))
YETAS= B8(3,0Y(M)N) =4, 8Y (M=l ,N)¥Y(M=2,N))
CJaXX]#YETA=XETAaYX]

IF(SWITCH.NE,0) GO TO 580

CaL.L ALFA(M,N,2,BT,ALPHA)

CALL ALFA(M,N,3,BTsALPKHA)

CONTINUE

54

ALFLSYETA® (ALPHACL,2)+ALPHA(L,3))/CJaXETA#CALPHA(2,2)+ALPHA(2,3))

/CJ

ALF23=YXT®(ALPHACL12)+ALPHA(L,3))/CJ+XX]u(ALPHA(2,2)+ALPHA(Z,3))

/7CJ
ALF3sALPHA(3,2)+ALPHA(3:3)
ALF4(N:3)=0,0
C{M,N,1)s=2,2ALF2
C(M,N,2)=0,0
C(MIMQS)‘Z.“ALFl
CIMiN,4)2,80AF2
C(M, N, 50,0
C(M,N,6)E= ,BuAlLF]
C(MyN,7)=0,0
C{M,N,8)=1,5«(A L F1=ALF2)+ALF3
LOWER LEFT CORNER
XXPz= Be(3,8X(M,1)ed,eX (M, 204X (M;3))
¥YXizr Ba(3,e¥(M,1)=4,8Y(M,2)4Y(M,;3))
XETAz=,86(3,6X(M,1)4 aX(M=1,1)4X{M=2,1))
YETASe 52 (5,8Y (M, 1)=4.8Y(M=1,1)+Y(M=2,1))
ClesXX]avETa=XETA®YX]
IF(SWITECH.NE,Q) GO TO 3%0
Call ALFA(M,4.3,B7.ALPHA)
CALL ALFA(M,;1:4,BTALPHA)
CONTINUE

ALF1eYETA (ALPHACL  3)+ALPHA(L1,4))/CJU=XETA®(ALPHA(Z2:3)+ALPHA(2:4))

/CJ



2002

512

515

520

560

1

1

ALF?S;;XI@(ALPHA(&&E)%ALPHA(i#é})/CJ%XXI&(éLPHA(E:S)#éLPHA(2;4))

N

ALF32ALPHA(3,31+ALPHA(3,4)

ALF4(Mes6320,0

C(Msl,1)22,8ALF2

C(M.i;ZifO.@

C(M,1,3)2,8a4F1

C(Mr1.,4)=,8aA|F2

C(M,1,%)=0,0

CiM,4,6)z~2,8ALF1

C(M,1,7)=0.0

C(Myi1,8)==9,54(ALFL+ALLF2)+ALF3

UPPER BOUNDARY

I=1

JCOUNT=0

IFCIC,EQ.0) GO TO B12

DO 2002 11=1,3

DO 2002 JJ=1,4

ALPHA(IT,,JJUY=0.0

CONTINUE

SWITCHERD.D

DO 2005 ICOUNTS1,N

CONTINUE

DO 520 J=2,NM1

XX!=-5“(X(x.d*l)FX(Zadﬂi))

YXI=o58(Y(1,J+ L)y {],del))

XETA=,De(3,aX(1)J)md 0X(1+1,J)eX(]1¢2,))

YETA=,58(3,0Y([sJ) =4, oY (I+1,J04Y(1%2,J))

CJeXXI#YETA-XETA®YX]

[F(SWITCH.NE.D.) GO TO 515

ALPHA(S:i)’loO

CONTINUE

ALF1=(ALPHA(L,1)sYETA=ALPHA(2,1)eXETA)/CJ

ALF2=(=ALPHACL 1)eYX]+ALPHA(2,1)8XX]1)/CJ

ALF3sALPHA(3,1)

ALFA4(Js1)30, 0

IFCJ.EQ, ICOUNT)Y ALF4(J,1)=1,D

Cel,J,1)=0,0

C(1,J:23=0,0

Cll,dr3)=.8upF1

CCl,Jrd)=2,%ALF2

C(l1,J,5)=0.0

Cll,JdsB)=m,50ALF4

Cll de7)8=,58)pLF2

ClIsJsB)=) BeALFR24ALF3

CONTINUE

UPPER LEFT CORNER

XX15e ,58(3,6X(L,1)=4,eX(1:2)+X(1,3))

YX12=, 50 (3,86Y(L,1)=4,8Y(L,2)4Y(1,3))

XETA=,B5a8(B3,eX(L,1024,8X(2,1)4X(3,1))

YETAz Se(3,ev(1,1)=4,8¥(2,10+Y(3,1))

CesXXI#YETA=XETAsYX]

IF(SWITCH«NE,0:) GO TO 560

CALL ALFA(1,1:.1,BTALPHA)

CALL ALFA(1,1,4,BTALPHA)

CONTINUE

ALF1aYETA# CALPHA(L 1) +ALPHA(L:4) ) /CUnXETA®CALPHA(2,1)4ALPHAC2,4))
/CJ

55




570

2

1
1

56

ALF2==YX 1o (ALPHA(L 1) +ALPHACL 40 )/CUnXXTe(ALPHA(2, L) +ALPHA(2,4))

/64U
ALF3=ALPHACS 4 )+ ALPHA(S,4)
ALF4(1:1320.0
{F{ICOUNT . EG.17 ALF4{1,17321.0
Clis1,1)==,564LF2
Ci{i1:4,2)=0,0
ClL,1,3)=,8epLF1
C(i:,4.,4)=22,%AF2
C(1,1,5)=0,0
C(i,1,6)3=2,8ALF1
C(1:1u7)=010
C(1:1,8)8=4,84(ALF1=ALF2)*%ALF3
UPPER RIGHT CORNER
XX12,88(3aX(LiN)ed oX{L,N=L )X (1 N=2))
YX1=,54(3,6Y(LoN)=4,8Y(L,N=1)+Y(1,Nmr2))
XETA® Ba(3,e4X(1,N)=4,aX(2,N)+X(3,N))
YETA=.56(3,4Y(L,N)ed, aY(2,N)+Y(3,N))
CJeXX]sYETA=XETA®YX]
IF(SWITCH.NE. Q) GO TO 570
CALL ALFACLN:1,BT.ALPKRA)
CALL ALFAC1,N,2,BT+ALPHA)
CONTINUE

ALF1=YETA®(ALPHACL 1)+ ALPHA(1,2))/CU=XETA#CALPHA(2,1)+ALPHA(2:2))

/CJ

ALF25=YX16(ALPHACL L) +ALPHA(L,2))/CU+XX o (ALPHA(2,1)+ALPHA(2,2))

/CJ
ALF3=ALPHA(3, 1)+ALPHA(3,2)
ALF4(4.2)20,0D
IFCICOUNTEQ.N) ALF4(1,2)=1.0
Cli,N,yL)z=,BeAlF2
C(lOE\QIZ):OQO
C(l)N33)=2.*ALFl
C(iﬁN,4)=2.“ALF2
Ct1:N¢5)=0,0
C(i/N,6)3~,58ALF1
C(L/N,7220,0
C(1,N,8)=1,54(ALFL+ALF2)+ALF3

CanausTIMING INFO

600

1200

CALL SECOND(TIM)
PRINT 5000,TIM

SUCESSIVE OVER=RELAXATION TO SOLVE FOR PHI

DO 600 [=1.M

DO 600 J=i,N

PHI(1,J)=0,0

CONTINUE

IF (IC«NE.0) PHIC(L ICOUNT)=1,0
WYX=WRB

Wxesd .0

KiTi0=0

PRINT 1200

FORMAT(&0 ITERATIONS, 10X, #EPSCXe, 13X, #8Xu#, 12X, 6SRX#)

DO BOD MOST=1,1TA
K1T=MOST

SRX=0,0

§¥=0.0 »
IF(IC.NE.O) GO TO 615
UPPER LEFT CORNER




L]

610

615

620

630

1 +C(1ede7)8PHT(

57
PHITE(C( L1 L) ePHI(3,104C (1,1 s3)ePHI(L:3)+C(1,1,4)8PHI(2,1)+
i C Lol 6ePHI(1:2)+ALF4(1,1))/C(1:4,:8)
RXsPHI(1:1)=PHIT
PHIC1,1)2PHI(L:1)«RXoWX
SRY=ERXsR¥es?
EXzSX+PHI(1,1 )08
UPPER BOUNDARY
=1
DO 610 J=2,NMi
PHIT=(C(IaJ:3)“PHI(I»Jv1)+C(I:Jad)*PHI(I*led)*c(lcdeé)*PHl(Iod*i)
1 $CCLoJs 7)4PHI(I#2,J)+ALF4(J,12)/C0 ] 8)
RXEPHI(I ) =PHIT
PHI(I,J)sPHI{]»J)=aRXaWX
SRX=GRX+RXa 42
EXeSX+PHI(], J)#e?
CONTINUE
UPPER RIGHT CORNER
PHITE(C(L Ny 1)OPHI(I,NI+C(L N, 3)6PHIC(L N-1)+C(1,N,4)aPHI(2,N)
i HC(LI N, 6)#PHTI(L)Nm2)+ALF4(1,2))/C(1,N.8)
RXBPHI (41 N)=PHIT
PHICL,N)=PHI(1:N)=RXaWX
SRX=BRX4RXau2
SX=SX+PHI (1, N)wu2
CONTINUE
LEFT BOUNDARY
DO &30 1=2,MM}
Jd8l
PHITE(C( Lo Jd s L)¥PHICTI =1, J)+C( 1o Js4)8PHICI#1  D+C(T,J)6)PHI(T,JeL)
1 #C(Iads7)RPHI( T2 J*2)+ALF4(]1,4))/C(]1,J28)
RX=PHI(],J)=PHIT
PHICL ,J)sPHI(T »J)=RX8WX
SRX=SRX+RXu a2
SXsSX+PH]I( s J)®a2
INTERIOR POINTS
DO 620 J=2,NML
FBARFO!O
PHITSC( ] sJ o1 )8PHICI=1,J)2CC1,Ja2)eRPRHI(TI =Ll )*C(1,J,3)8PH]I(1sJ=1)
1 *CLTs s 4)BPHICI+4,  J)+C(T 2 J e B)4PHI( T+ Jr 1)+ C( 1o J, 6)ePHI( T J+1)
PHIT=(PHIT&FBAR)/C(1:J:8)
FBARP(],J)sFBAR
RX2PHI(],J)=PHIT
PHICI, JI=PRI(]+J)=RX2WX
SRX=SRX&«RX# 42
SXaSXPHI( ] J) el
CONTINUE
RIGHT BOUNRARY
J=N
PHIT= (C(I!dol)*PHI(I”lrJ)*C(I:J:S)“PHI(IpJ”l)*C(I;Jf4)“PHI(I*1;J)
leJe2)+ALF4(1,2))/C( ], 8)
RX=PHI(T J)=PHIT
PHICI,JYePHI(T  J)=RXaWX
SRY=8RX+RYas?
SXsSU+PHI{],Jyua?
CONTINUE
LOWER LEFT CORMNER
PHITE (C(Mrt, 1) 8PHTI(M=1, 1)¢CIM, 1:3)8PHI(M,3)+C(M 1, 4)8PHI(M=2,1)

1 SCIMd, 6Y8PHTIM; 2Y+ALF4 (M, 4))/0(M:1,8)

RXsPHI (M, 1)=PHIT




¢

640

660

680
690

1210
700

750

58

PHI(M, L)sPH]I(Ms1)eRXaWX

SRY=GRX+RXuau?

SXeS¥+PH](M,1)8a2

LOWER BOLNDARY

faM

DO 640 J=2,NM1

PHITE(C(T o 1) ePHI (=1, J)C{ 1, J,3VaPHI(]L J=1)+C( 1 J, 6 6PHI(],Js1)
“C(ToJs7)0PHI(]e2,J)+*ALF4(J,3))/C(] e 8)

RXePHIC(I s J)=PHIT

PHICI,J)SPHI(LJ)=RXaWX

SRX=SRX&RXau?2

SXESXSPHI (], J)#e2

CONTINUE

LOWER RIGHT CORNER

PHITE(C(MINsL)oPHI(Mel s N)4CIMIN, 3)4PHI (M N=L)+C(Ms)N, 4)ePHI (M=2,N)
*C(MyN, B)BPH](MiNe2)*ALF4(N,3))/C(M,N: 8}

RXEPHI(MsN)=PHIT

PHI(M,N)SPH]I(M)N)«RX#WX

SRX=ERX«RXua2

SXsSX+PWI (M, N)sa2

IF(SX.,EQ.Q0,0) GO TO 730

IF(KIT.EQ.4) SPRX=8RX

EPSCX=8QRT(SRX/SX)

IF(ERPSCX.GE.20,) STQP

IF(EPSCXLELEPS) GO TO 730

ETAX=SART(8RX/SPRYX)

ELX=(WX+ETAXeL +0)/(WX#8QRT(ETAX))

IF(ABS(ELX)=1,.0)680,680,660

WAX3WX

GO TO 690

WAX=22,0/(1,0+#SART(1,0~ELX##2))=WQ

WXsRHO®WAX&(1,0=RHO)#WX

WXel,0

IF(WX.LT,1,0) WX=4,0

SPRX=2SRYX

KIT10=K1Ti0+1

IF(KITL0.LT.20) GO TO 700

PRINT 1210,KIT,EPSCX:SXsSRX WX

FORMAT(115,4E45,7)

KITi0=0

CONTINUE

CALCULATE BY ROW FROM RIGHT TO LEFT AND BROTTOM TO TOP

LOWER BQUNDARY

[=M

DO 780 Ls2,NMY

JaN+1 =L

PHITa(C(IsJoL)8PHI( =1, J)+C( ]2 J23)4PH]
+C(Tads7)OPHI(]=2,J)+ALF4(J,3))/C

RXePHI(1:+JI=PHIT

PHICT s )ePHT (] J)=RX#WX

CONTINUE

LOWER LEFT CORNER

PRHITE(C(Mid 1 18PHTI(Med s 1390 IMid,3)aPHI (M 3)+C (M, 1, 4)4PHI(M=-2,1)
SO(M, 1, B OPHTIM, 2)4ALF4( M, 4))/C(Ms1,8)

RXEPHI(M, 1 1=PHIT

PHI (M, L)sPH] (Ml ) «RX&WY

DO 770 K=2,MM{

IQM*le

L4

[ed=l)+C( 1, Js6)ePHI (], el
[,eB)

.




740

770

[}

780
800

710
720

Cauew

730

Covase

808
AL0

RISH7 BOUNDARY >9
JE

PHITeEC(C( 1 J, L)8PHI (Tl , Ji+C (1 J,3)epRI(],J"1 *C(Ierﬁ)“PHICI*ltJ)
1 4001 Je7IOPHI(T Je2)#ALF4L],2)3/C0 1 e 8B

RXePHI( ], JiePHIT

PHICT ;) sPHICT i J)eRXOWX

INTERIOR POINTS

DO 760 Le=2,NM1

JENSL ]

FBAR=0,0

PHITEC( T s L) ePHI( =1, J)#C(1, U 2)ePHI(Iedsd=l)*C( 1 J,3)uPHI( 1 J=1)
i #Cl1oJrd)ePHI(TI+1, U)RC(1,JsB)8PHI( T+ d+1)*C( T J:6)8PHI (12 J*1)
PHITeE(PHIT+FBAR)/C(] 4 8)

FBARP(!,J)eFBAR

RXePHI(T,J)=PH]T

PHICT,JIBPHI(] s J)sRXuWX

CONTINUE

LEFT BOUNDARY

Je1i

PRHITE(C( 1o J 1 )8PHI(Iwd )#CTeds8)8PHI( 1410 U)+CT1J,6)8PHI(],J+1)
1 wC(1aJdsT)aPHI(], Je2)+ALF4(],4))/CC1 ., 8)

RXsPHI(1 . J)=PHIT

PHICI  J)ePMHI(] rJ)eRX8UWX

CONTINUE

IF(IC.NE,O)Y GO TO 800

UPPER RIGHY CORNER

PHIT2(C(LaN, 1)BPHI (3 N)I+C(1 N 3)PHI (Lo N=L)+C(L N1 4)uPHI(2N)
1 wC(LIN, 8)OPHI(1L,No2)+ALF4(41,2))/CC(1,N:8)

RXEPH]I (1 N)=PH]T

PHIC(L,NY2PMTI (1 iN)=RXeWX

UPPER BOLINDARY

fzd

DO 780 L.®2,NM1

JaN+lal

PHITE(C( Loy 3)ePHIC(T s Jodl ) 4G oo d)oPHI(I+L o J)*C(]1,J 6)aPHI(],J*1)
1 $C(1odr7)8PHI(142, )+ALF4(J,34))/C( ], 8)

RX2PHI(],J)=PHIT

PHICI,JYBPHI( ] J)=RX8WX

CONTINUE

CONTINUE

PRINT 1110,KITEPSEX:SX:SRX

DO 72D 1el.M

PRINT 1400, (PHI(I  WJisdal,N)

CONTINUE
«TIMING INFO

CALL SECOND(TIM)

PRINT 5000,TIM

GO TO 840

PRINT 1120,KIT

PRINT 1440,EPSCX,8XRX, WX
aT{MING INFO

CALL SBECONB(TIM)

PRINT 5000,TIM

NO 808 1=1,M

PRINT 1400, (PHICT,J2Jsl, M)

CONTINUE

CONTINUE

i=4




2001

2003

2004

2005

2006

2008

373

00 2001 Jsz,NML

XX12, 88 (X(1,Jel)eX(]s)ml))

YTz B5a(Y(lJellay(]odml))

KETAs ,Da(S aX(l,Ji=d, o1+, )X [#2,J))

YETA2  Bal(3,eY(1,Ji=4  aY (141, JieY]42,J))
CJIsXX]uYETA=XETABYX]

ALF15-XETA/C

ALF2e XXI/CJ

PHIXT20,88(PHI(1,J*1)=PHI(1,J=1))

PHIETAZ Q88 (3.aPRI(l:))ud, oPHI(2,J)ePH](3,))
CViJI=ALFlePHIX] ¢ ALFZ «PHIETA
CONTINUE
XX1z=,B8(3,e6X(1,1)m4 28X (1,2)+X(1:3)
YX18e,54(3,8Y(1,4)=4,8Y(1,2)+Y(1,3)
XETAZ , Sa(3,a0X(1,1)=4,9X(2,1)+X(3,1)
YETA= ,5e(3,8Y(1,1)=4,0Y(2,1)¢Y(3,1)
CleXXI#YETA=XETA®YX]

NERL

ALF1s=XETA/CJ

ALF2s XXx1/¢€J

PHIXIz «0:89(3,0PRI(1,J)=d . #PH](2,J)«PH]I(3,J))
PHIETAZ 0:86(3,4PMI(1l,J)ed ,ePHI(2,J)+PHI{(3,J))
CV(JIasALF1ePHIX] « ALF2 sPHIETA

XX12, 58 (3,eX{1oN)ed aX{1,N=1)+X(1sN=2))
YX12:82(3,8Y(1l)N)ed, aY(1, N=1)eY(1,N=2))

XETAB Ba(3,¢X(1,N)=4, X (2, NI+X({3,N))

YETAZ Sa (3, aY(1,N)=d4,8Y(2,N)+Y(3,N))
CJeXXI®YETA=XETA®YX]

JeN

ALE1=s=XETA/CY

ALF28 XX1/¢J

PHIXIz 0:Be(3:4PHI(L,J)nd, sPHI(Z2,J)+PH](3:J))
PHIETA® D54 (3,6PRI(1,J)=d4,8PHI(2,J)#PH](3:J))
CVIJ)=ALFLaPHIX] +« ALF2 =#PHIETA

0O 2003 Jsi,N

FlJs ICOUNT YOV U)

CONTINUE

00 2004 I1el1,3

ALPHA(TIT 1)=0,

CONTINUE

CONTINUE

DO 2006 134 ,M

DO 2006 Jei,N

EVALLT - )BF(1,J)

CONTINUE

CALL EIGEN(N,EVAL,EVI EVEC,50:3,0,4,NDIM)

DO 2008 ls4,N

NVAL (1)el

EIGVAL(I)= EVAL(T 1)

CONTINUE

DO 3785 181N

Kzl

DO 374 JsK4N

IF (E16valk{Ti=EIGVvAL{J)) 374,574,373
XTEMPsEIGVAL(J)

[l=NVAL(J)

ETGVALIJISETGVALCT)

NVAL(JYeNVAL(T)

)
)
)
)

60




61

EIGVAL(T)asXTEMP
NVAL(TIe]]
374 CONTINUE
375 CONTINUE
PRINT 400.1TITLE
400 FORMAT (1H1,1246/)
PRINT 401
401 FORMAT (774 E]GENVALUES AND EIGENVECTORS ASSOCIATED WITH INFLUENCE
1 COEFFILIENT SOLUTIONS)
DO 376 1®1i,N
PRINT 402:1,E16VAL(T)
402 FORMAT (&H MODE ,13,14H EIGENVALUE ,E15,8)
KeNVALCT)
PRINT 202+ (EVEC(JsK) s JEL,N)
376 CONTINUE
c AUXILARY EIGENVECTORS DETERMINED
GO TO 10
1100 FORMAT(AELR,7)
1110 FORMAT(#1SOLUTION DID NOT CONVERGE FOR COEFFICIENTS#/,
1 ¢ AFTER @,1%,4 ITERATIONS EPSCX= #,E15,7.
2 & SX2 @,EL5,7,4 SRX= #,E18,7/)
1120 FORMAT(eLCCEFFICIENT SOLUTION CONVERGEDR AFTER ITERATION#,15)
1130 FORMAT(a1JACOBIAN®)
1140 FOQRMAT(o EPSECX =%,E15.7,0 SX 20,E18,7 % RX =#,E15%,7,
i ® WX Be#,E15,7/)
1160 FORMAT(&DALPHA(T ,J)®)
END




i0

20

30

SUBROUTINE ALFA(],J/K:BT,ALPHA)
DIMENSION ALPHA(3,4),X(40,24),Y(40.24)

COMMON AE BE,CE,DE'EE,8INT . COST HO XY

ETA=X(l,J)aSINT+Y( I, J)8COST
!F(BT.EQ&”i&Q) GO TQ 30
IF(ETAGT=H0O) 6O TO 20
ALPHA(L ,K)e=C0O8T
ALPHA(Z2,K)aS5INT
ALPHA(3Z,K)s0,0

IF(JEQ,1) RETURN
ALPHA(L,K)=C0OST
ALPHA(Z2,K)e=8INT

RETURN '
FX82.00AE#X( ], J)+BEaY(],J)+DE
FYeBE#X(1,)J)*2.00CEaY (], J)+EE
RT2SART(FXue24FYanad)
ALPHA(L,K)sFX/RT
ALPHA(Z,K)8FY/RT
ALPHA(3,K)a0,0

RETURN

IF(ETA+HD)20,10,40

END
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SUBROUTINE EIGEN(N/BsTI T/ MAXIT,NDEC , NLOPT N2QPT,NDIM)
SURROUTIME FOR GENERATING THE EIGENVALUES AND EIGENVECTORS
OF A REAL SYMMETRIC OR NON=SYMMETRIC MATRIX.
THIS PROGRAM GENERATES THE EIGENVALUE MATRIX(REAL QR COMPLEX):
AND AS OPTIONS: THE EIGENVECTOR MATRIX AND ITS INVERSE,
THE CALL FOR THIS SUBROUTINE 18 AS FOLLQWS,
CALL EIGEN (N:B:T1:T,MAXIT,NDEC,NLOPT . N2ORT . NDIM)
WHERE N 1S THE ORDER OF THE MATRIX
B 1S THE MATRIX WHOSE EIGENVALUES ARE DESIRED
T1 158 THE [NVERSE OF THE FIGENVECTOR MATRIX
T 1S THE EIGENVECTOR MATRIX
MAXIT 16 MAX NO, OF ITERATIONS FOR GENERATING EIGENVALUES
NDEC 1S THE NUMBER OF TIMES RESULT 18 REFINED
NL{OPT 1S 1 IF OPTION =1 IS DESIRED:, OTHERWISE 0O,
OPTION =1 PROVIDES FOR GENERATING THE EJGENVECTOR MATRIX INVERSE
N20PT IS 1 IF OPTION =2 ]S DESIRED: OTHERWISE 0,
OPTION 22 PROVIDES FOR GENERATING THE EIGENVECTOR MATRIX
NOIM 1§ DIMENSIONED NO. OF ROWS OF MATRIX (B)
THE ORGINAL MATRIX B I8 LOST DURING THE COMPUTAYIONS AND 18
REPLACED By THE EIGENVALUE MATRIX,
DIMENSION B(1)2TI1(L).T(1)
INITIALIZE COUNTERS FOR NO, OF ITERATIONS AND YR,YS REDUCTIONS
IT=0
NTIMES=EQ
ANORM=0,0
DO 1100 Is4,N
nO 1100 Jm4,N
fJelJel)aNDIMs]
ANORMs ANORM+B(1J)n#42
ANORM=BQRTF ( ANORM)
DO 1101 184,N
DO 1101 J=i4N
tJe(Jel)eND M ]
B(IJ)aB(1J)/ANORM
FORM IDENTITY MATRIX IN T!I LOCATION IF OPTION L 1S DESIRED
IF(NLIOPT21010,1010.1004
DO 1003 ls1,M
11 = (Jet)aNDIM+]
DO 1002 JB1,N
1J &8 (Jel)aeND[Me]
TI(IJ) & On
TI¢(I1) = 1,0
FORM JDENTITY MATRIX IN T LOCATION IF OPTION 2 DESIRED
IF(N20PT)1020,1020.10114
DO 1013 134.N
11 = (Jet)aNDIMe]
DO 1012 J2i.N
1J 8 (Jel)eNDIMe]
TC1JY 8 O,
TCID) & 140
CONTINUE
YRei0,0E=7
¥5e10,0E=7
NOeN=]
SUM=10,0E20
TaU=0,0
EN=0.0
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26
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28

DO 1 1=21,NO
NIERES]

DO 1 JeaJlN

IJ 2 (JeideNDIMe
JI 2 (leideNDIMeJ

TAU &8 TaU+B([Jlee24B(J] )ee2

DO 2 131N

11 2 (1=1)eNDIMe]

TE = B(I1)

ENgEN+ TR0 &2

ENsEN&TAU

DELN=SUM=EN
1F(DELN)YB,8,7

SUM=EN

ITelTel
IF(MAXITeIT)120,120,10
CONTINUE
IF(NDEC=NTIMES)1200120.9
YREYR/Z100,.0
YS=YS5/100,0
NTIMESsNTIMES+]
1Ta]Tel

DO 98B Kai,NO

KK 8 (K=1)aND]IM+K
KQeK+1

Do 9& MakKQ,N

MM 2 (Mol )aNDIM+M
KM = (M=q)aND]M+K
MK s (Keil)aND][MeM
Hel,D

6=0.0

HJj20.0

DO 28 lai,N
IF([=K)14,24,14
IF{1=M)18,24,15
1K = (Kel)sNDIMe]
K1 (1=1)aNDIMeK
™ (M=t)aNDIMe]
M1 (I=1)aNDIMeM
BO 8(1K)

BR B(K!)

B@ B{IM)

B = B(MI)
HsH+BR#R§=BOsRBQ
TEPzRO4BROSRSERS
TEM=RReRR4RAQ&BQ
G=G+TERP®TEM
HJeHJ=TER+TEM
CONTINUE

Ha2,NeH

D & B(KK)=B(MM)
TEP = B(KM)

TEM & B(MK)
EeTERGTEM
FsTER-TEM

IF(ARSF (C)eYR)27,:27:+30
CCei.D

£520,0

8 ¥ OB 3 ;W ow




29
30
31
400

401
32
33
34
35
36
37
38
39
40
41
4?2
43
75

205

1070
1071

1072
1078
1076

GO TO 3¢

ByeD/C

IF(BY 400,401,401
§l6e=1.0

60 To 32

BI6 84.0
COT=BY+(SIG#8ARTR(BY#BY+1,0))
§52SIG/SARTF(COT#EOT+1,0)
CCessalnT

TEPsCC#CL=65488
TEMa2,0e88S6CC
N=DsTEP+CeTEM
HeHe TEP =k JoTEM

CONTINUE

EDe2,0¢EaD

FDH=zED =K
DENsG#2, 04 (E4E«DsD)
TEE=EDH/ (DENHDEN)
CONTINUE
IF(ABSF(TEE)=YS)44,44,46
CH=1.0 )
SWa0,0

GO TO 48 _
CHe1,0/8GRTF(1,0«TEE#TEE)
SHETEE#(CH

CiaCHnaCL=8HuE88
C2aCHaCCwBiHu8S
§12CH658+5H#CE
§2ew(H#E8+*EHeCC

> CONTINUE

IF(51)558,54,55
IF(52)55,93,88

5 DO B9 Jsi.M

KJ 8 (Jel)aNDIMak

MJ = (Jul)eNDIMeM

RO = B(KJ)

RR = R(MJ?

RIKJ) 2 CieBO+54#BR
R(MJ) 2 824B0N+L24RR
DO 66 JziN

JK (Ked )aND M+

JM (Med )aNDIMe)

BQ BJK)

AR BCUM)

B(JK) 2 BQaC2-BReg2
B(JM) B =BOwS1+BRaC1
IF(NLOPTILO78,1078,1071
DO 1072 Jai,N

K 2 (Jei)aNDIM+K

MJ 3 (Jai)eNDIMeM

BO = TI(KD)

BS = T1(MJ)

TI(KJ) & C1eBQR+812885
TI(MJ) = S20RG+(2s8S
IF(N20PT)I®8,98,1076
DO 1077 Jei,N

JK = (KeldeNDIM:Y

M = (Mad)aND M+

o1 8 e
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1077

120

1102

1103

1104

1105
1106
1107

BO 2 T(JK)
BR = T(JMI
T(JK) 2 BQuC2-BR4§2

T(JM) B «=BOegi+BRaC1
CONTINUE

G0 TO 97

DO 1102 184N

DO 1102 J=4i,N
fJalJalYuNDIMe]
B(lJ)eB(1J)sANORM

IF (N20PT) 1107,4407,1103
DO 1106 J=4,N

ANORM=0, 0

DO L1104 ley,N
{Je(Jel)aND M ]

ANORMz ANORM+T(1J)an2
ANORM2EQRTE ( ANORM)

DO 1408 I=4,N
tTJa(J=l)aND [ Me]
T(IJ)eT(1J)/ANORM
CONTINUE

RETURN

END

66






